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Waves in a rapidly rotating gas 
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The eigenvalue problem for the ‘acoustic’ modes in an inviscid, perfect gas with a 
quiescent state of isothermal, uniform rotation in a circular cylinder is solved asymp- 
totically for A2fm with (y-  l ) A 2  = O(l), where A is the peripheral Mach number 
and y is the specific heat ratio. The limit (y-  l)A2 J. 0 leads to a solution in terms 
of the confluent hypergeometric function for all A, and the resulting eigenvalue 
equation is solved explicitly for either A2 S 1 or A2 9 1. Attention is focused on those 
modes (likely to  be of greatest practical importance) for which the peripheral speed 
of the wave relative to that of the container tends to the sonic speed as A2 t co. Vis- 
cosity and heat conduction are significant in an inner domain of low density, wherein 
the solution is expressed in terms of a generalized hypergeometric function. 

1. Introduction 
The axial and transverse wave motions of an inviscid, perfect gas relative to a 

quiescent state of isothermal, uniform rotation in a circular cylinder have been con- 
sidered by Morton & Shaughnessy (1972), who obtained numerical solutions of the 
eigenvalue problem and present graphical results for eigenvalues and mode shapes, 
and by Gans (1974), who considered especially the limit y J. 1, where y is the specific 
heat ratio.? These wave motions are important in the dynamical analysis of a gas 
centrifuge. I consider them here on the assumptions that y - 1 < 1 and (in $9 4 and 5) 
that the rotational speed is sufficiently large to render the density small outside of a 
thin layer adjacent to  the lateral wall of the container. The latter condition, which is 
realized in current practice, simplifies the inviscid model but renders viscosity and 
heat conduction significant in an inner domain of low density (where the kinematic 
viscosity and thermal diffusivity , being inversely proportional to the density, are 
both large), and both must be incorporated in the mathematical model in order to  
obtain physically acceptabIe solutions in this domain (cf. Yanowitch 1967). 

t Gans (1974) appears to have been unaware of Morton & Shaughnessy’s (1972) paper 
(I, in turn, had been unaware of Cans’s paper, which was brought to my attention by one of the 
referees of the present paper). Gans allows for a one-parameter (his a) family of quiescent 
temperature distributions (ranging from isothermal to adiabatic) in his initial formulation ; 
however, he obtains explicit results only for y 5 1, in which limit his one-parameter family 
collapses into a angle member (there being no difference between isothermal and adiabatic 
conditions for y = 1 ) .  There is very little overlap between our respective treatments of the 
eigenvalue problem for y .C 1. Gans omits the factor (ha-4AS)-l in his (5.3), the counterpart 
of (3.6) below, and hence obtains the spurious eigenvalues h = 2A ( A  = _+ 2 in his notation), 
although he recognizes that h = - 2A is suspect. Moreover, he holds his a, the counterpart of 
K, (3.3) below, fixed in the limit AS + a, and thereby excludes the only significant asymptotic 
limit, A* N n2 + ae as A* --f 03 with n, K = O( 1) .  He does not consider the inner and outer limits 
that are examined here in $84 and 5. 
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The ambient pressure and density in an isothermal, rotating gas in a circular cylinder 
of radius ro and length 1 are given by 

$/p0  = /;/p0 = e-YE, E = $A2{ 1 - ( r / ro)2} ,  ( i . l a ,  b )  

A = Qro/co, co = (YPo/Po)*; ( 1 . 2 a ,  b )  

p o  and po are the pressure and density a t  the cylinder wall ( r  = ro) ,  co is the sonic velocity 
(which is independent of r by virtue of isothermality), y is the specific heat ratio, Q 
is the angular velocity, A is the peripheral Mach number, and c is a dimensionless co- 
ordinate that varies from 0 a t  the wall to $A2 a t  the axis. The assumption of rapid 
rotation implies 

where 

6 E 1/A2 = ypo/(poQ2ri)  < 1, (1.3) 

which suggests that the disturbances to  be considered have a scale height 6ro and are 
concentrated in 5 = O( 1 )  (but see below). 

The equations that govern small, inviscid perturbations about the state of uniform 
rotation are formulated in $ 2. This formulation, which is equivalent to  those of Morton 
& Shaughnessy (1972) and Gans (1974) ,  culminates in a pair of linear, first-order, 
homogeneous differential equations that govern the complex amplitudes of the per- 
turbation pressure and radial velocity and contain two dimensionless wavenumbers, 
a (axial) and n (azimuthal), as parameters and areduced frequency, A, as aneigenvalue. 
The resulting eigenvalue problem admits a three-parameter family of solutions, the 
third parameter being the number of radial zeros. The parametric domain of greatest 
practical interest is a < 1 (modern gas centrifuges are long) and n = 1 (the only 
motions that couple with transverse motions of the centrifuge). The dominant mode 
(smallest A, no radial zeros) for prescribed a and n decays monotonically away from 
the wall and is likely to  be the most important for high rotation speeds; however, the 
higher modes may be significant for disturbances that originate in the outer flow 
(outside of the wall layer). 

The solution in the limit ( y  - 1 )  A2 J. 0 is expressed in terms of the confluent hyper- 
geometric function in $ 3. The resulting eigenvalue problem is solved approximately 
for all of the eigenvalues for moderate A by approximating the confluent hypergeo- 
metric function by a Bessel function. These approximations have only qualitative 
validity for IAI 9 1,  but they do describe the general trends and provide heuristic 
evidence that all but one (for fixed a and n) of the eigenvalues recede to  infinity in the 
limit A2 t 00. An asymptotic approximation to this dominant eigenvalue is obtained 
through an asymptotic approximation to  the confluent hypergeometric function. 

Asymptotic approximations for the dominant mode(s) in the limit A21.m with 
(y  - 1 )  A2 = O( 1) are developed in $ 4. The domain of these approximations is E = O(A) ,  
rather than 6 = O( l ) ,  because the scale height of both the perturbation velocity and 
the ratio of the perturbation pressure to the ambient pressure is O(ro /A) ;  however, 
the scale height of both the kinetic energy and the perturbation pressure is O(ro/A2),  
as anticipated above. 

The effects of viscosity and heat conduction in the inner domain are included in 
$ 5 ,  and an analytical solution is obtained in terms of generalized hypergeometric 
functions under the joint restrictions A2 1 and y - 1 < 1 after approximating the 
Prandtl number by unity. This solution matches the first outer approximation of 5 4. 
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It should be emphasized that, although a proper recognition of this inner domain is 
essential for the completion of the solution in the outer domain, viscous dissipation 
is concentrated in the boundary layers at  r = r, and z = 0 , l  (the Ekman layers), which 
are not considered here. 

2. Inviscid formulation 
The continuity, Euler (radial, azimuthal and axial components), and energy equa- 

tions that govern small perturbations about the equilibrium state of uniform rotation 
in the inviscid flow are 

Dp + r - l ( r jh ) r  + r-'@e +Pwz = 0, ( 2 . l a )  

p^(Du-2Rw) = - p r + R 2 r p ,  ( 2 . l b )  

( 2 . l c )  ~ ( D W  + 2 R u )  = - r-lpe, 

and 

where 

( 2 . l d )  

( 2 . l e )  

( 2 . 2 )  

subscripts imply partial differentiation, p and p are the perturbation pressure and 
density, u, w, UI are the radial, azimuthal and axial components of the velocity, and 
r ,  8, z are cylindrical co-ordinates in the rotating reference frame. The boundary con- 
ditions for free oscillations are 

u = 0 (Y = r,), ru = 0 ( r  = 0 ) ,  w = 0 ( z  = 0 , l ) .  (2 .3a ,  b, c )  

The boundary conditions ( 2 . 3 c ) ,  together with the requirement that the solution 
be single-valued in 8 (0 6 8 < 2n) ,  are satisfied by expanding in Fourier series and 
positing the component solutions 

{p ,p}  = {ctP, R)j3ei(ns-ut)cos kz, ( 2 . 4 ~ )  

and 

where 

{u, w} = c,{ - i ( r , / r )  Q, V }  ei(ne-ut)cos kz 

u: = ic, IV ei(nsFut) sin kz, 

( 2 . 4 b )  

( 2 . 4 ~ )  

( 2 . 5 a ,  b )  k = mn/ l=  a/r,, A = (nQ - a) r,/c,, 

m and n are integers, pis the ambient density, and P ,  Q, R, V and W are dimensionless 
functions of r/r,,. Substituting ( 2 . 4 )  into ( 2 . 1 )  and eliminating R, V and W ,  we obtain 

( 2 . 6 b )  
d 2nA 

{ n 2 - ( I \ 2 - a 2 ) x z } p + I \ ( z -  dx  -- A 

d 2nA 
ax A 

x - + - + ( ( y - 1 ) A 2 x 2  P + { A 2 - 4 A 2 - ( ~ - 1 ) A 4 ~ 2 } Q  = 0 ( 2 . 6 ~ )  

and 

where 

x = r / rU.  (2 .7)  
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The boundary conditions (2 .3u ,  b )  go over to 

& = O  @ = I ) ,  & = O  (z=O). (2.8u., b )  

3. The limit y 4 1 

modes, for which h2 = O((y - 1) A4)] in (2 .6 ) ,  eliminating &,t and introducing 
Letting (y -  1)A2 $ 0  with A-' = O(1) [which restriction rules out the rotational 

(3.1) 7 = fA2(r/ro)2 = 7&/rCJ2, 
we obtain 

and 

where 

& = 2(4A2-h2) -1h{7 (d /d7 )  + (nA/A)}P ( 3 . 2 ~ )  

(3 .2b )  {q(d/dq)2 (1 + 7) (d /dv)  4- K -I- 4 - fn2q-'} p = 0, 

(3 .3)  

The differential equation (3 .2b )  has a regular singularity with exponents -+-in at 
q = 0, and that solution which satisfies (2 .8b )  is given by 

nA 
h 

(ha- 4 A 2 )  (A2 - a2) 
2A2A2 

K = - $ + - +  

where 

is Kummer's (confluent hypergeometric) function. Substituting (3 .4 )  into ( 3 . 2 4  and 
invoking (2 .8u) ,  we obtain the eigenvalue equation 

(h2-4A2)-'[~{M'(7)/M(~)}+n(Ah-l+f)-~] = 0 (7 = 70 = *A2) .  (3 .6 )  

It is worth noting that (3 .4 )  reduces ( 2 . 4 ~ )  to 

p/po = Po(r/ro)n {M(7) /M(qo) }  e6(+-ot)cos kz (y  = 1). (3 .7)  

The eigenvalue equation (3 .6 )  is analytically intractable without further approxi- 
mation. If n,ct = O(1) (n = 1,a < 1 is the domain of greatest practical interest) the 
available approximations depend on the relative values of K and 70. We consider first 
the dgime I K (  q0,$ in which [S (3 .8 .3) ;  the prefix S designates an equation or section 
in Slater (1960)] 

M ( q )  = n ! e * l ( ~ z ) - " { J , ( z ) + ~ ( n +  l ) ~ - l q J , + & ) +  ...}, z = 2(1(q)4. (3 .8u,  b )  

Retaining only the dominant term in (3 .8u) ,  substituting into (3 .6 ) ,  and imposing the 
restriction h2 + 4A2, we obtain 

(3 .9u)  
where 

(3 .9b)  

t It is simpler to eliminate P and solve for Q if ?t = 0, in which case an exact, confluent- 
hypergeometric-function solution is obtained without the restriction (y - 1 )  AP @ 1 ; see appen- 
dix A. 

$ The inequality 1.1 % v,, E +A2 holds for A + 0 and fails for A2 + 00;  however, ( 3 . 9 ~ ~ )  
rests essentially on the modelling of M ( v )  by the dominant term in the expansion (3.8a) and 
has a much wider domain of utility than A a  @ 1 ; cf. Tricomi's approximations to the zeros of 
M(7)  (S56.1.3). 

d ~ ( z ) / J , ( z )  = F,(z2) = - 2nAA-l+ $A2, 

z2 = 2 K ~ 2  = ( ~ 2  - 4 4  (P - a2) A-2 + 2 n ~ 3 h - l  - ~ 2 .  
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The eigenvalue equation ( 3 . 9 ~ )  is similar to one obtained by Lamb (1932, $210) 
in connection with surface waves in a rotating basin. There is a discrete, infinite 
sequence of eigenvalues (of z )  that tend to the zeros of JA(z), namelyj;,, (m = 1'2, . . . ), 
as A + 0. Graphical comparison of F,(z2) and the right-hand side of (3.9a), qua function 
of z2, reveals that the eigenvalues of z2, say z;,,,, increaseldecrease with increasing A 2  
if Ah 2 0 [although the approximation ( 3 . 9 ~ )  presumably deteriorates for large A2] .  
It also follows from this graphical comparison that z',,, > 0 for all Ah c 0 if m > 1 
but that z " , , ~  < 0 for sufficiently large values of A2 if and only if Ah c 0; for example, 
(3.9) implies zZ1 c 0 if Ah c 0 and JAl > 2-  J2 (zfsl = 0 at IAI = 2-  J2 and 
A = - J2sgnA). 

The eigenvalues of h may be expanded about A = 0 by expanding F(z2)  about 

(3.10) 

The second approximation is [it is convenient to assume A > 0, there being no loss of 
generality by virtue of the invariance of the eigenvalue problem under the trans- 
formation ( - A ,  A )  +- (A ,  - A ) ]  

(3.11) 

z 2 - - jn , ,  " 2  = z:, using the differential equation 

2y(dF/dy) + F2 + y - n2 = 0, y = z2. 

h2 = a2 + zf + 4nAzf(zf- n2)-l (zf + a2)-& + O(A2) (zo = j&J. 
The third approximation with a = 0 is 

h2 = + 4nAz0(zf- n2)-l + A2{5 - zf(z: - n2)--1 - 8n2zf(zf - n2) -3 }  + O(A3) (a = 0). 

(3.12) 

This last approximation is consistent with Morton & Shaughnessy's (3.5)' which holds 
only for n = 0, after expanding their result in powers of A .  It also yields 

h2 = 3.39+ 3.08A + 1.59A2 (n = 1, m = 1 ,  a = 0) ( 3 . 1 3 ~ )  
and 

h2 = 28.42 + 0-78A + 3.95A2 (n = 1 ,  m = 2, a = 0). (3.13b) 

A fair approximation for all but the dominant mode for any n and a and for moderate 
values of A is given by 

(3.14) 

For example, the values of h given by (3.14) for a = 0, n = 1 and m = 2 are in error 
by 2.5% for A = 3 and 9% for A = 4. 

The preceding approximations fail for sufficiently large A but appear to be adequate 
for at  least rough estimates of the eigenvalues in IA( 5 m+ 1 with the important 
exception of the dominant mode (m = 1 )  in that parametric domain in which 
z i , ,  c 0 (A S - 0.6 for n = 1) .  It does not appear to be possible to obtain a satisfactory 
approximation to h from (3.9) in this domain except in the neighbourhood of zl, = 0 
(see above); accordingly, we seek an asymptotic approximation as A J. - 03. 

A suitable asymptotic approximation to log M for 7 % 1.1 % 1 is given by [S (4.5.5) 
for K > 0, S(4.5.21) for K < 01 

h2 = j,!& + a2 + 4(n/j;,,) A + 4A2 (A4 < 4jk:m, m > 1) .  
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where K is a constant. Substituting the derivative of (3.15) into (3.6) and letting 
A J. - 00 with h = O( l ) ,  we obtain (after a straightforward but lengthy reduction) 

h2 = n2+a2+O(A-') (A J. -00). (3.16) 

This result also appears [after invoking the appropriate counterpart of (3.15)] to hold 
for A too, but the numerical results of Morton & Shaughnessy (1972, figure 4) and 
the approximation (3.9) suggest that (3.16) is valid only for A J. -co. The cause of 
the spurious result for A .T co is not clear at  this time. 

The differential equation obtained by eliminating Q between (2.6u, b) and retaining 
O(y - 1) as y 4 1 also may be transformed to the confluent hypergeometric equation. 
The resulting solution is 

(3.17) 

+ #(Y - 1) ( n A / W ,  (3.19) 

and O{(y-  1)2} error terms are implicit in each of (3.18u, b) and (3.19). The counter- 
part of (3.6) is 

{A2-4A2-(y- l)A4}-'[~q0 M'(~7o)+(n(AA-'+#)+(y-  1-b~)7o}M(c7o)] = 0. 
(3.20) 

4. The limit 64 0 (outer approximation) 
It appears from the results of the preceding section that, at  least for y = 1, all of 

the eigenvalues recede to infinity as A + kco except that for the dominant mode 
(one for each of n = 0, 1, ...) as A J. -00, which is given by (3.16). We consider here 
the asymptotic approximation to this mode in the limit S E l /Aa J. 0 with 5 = O(1) 
(but see below), where 6 is given by (1.1 b). Since y-  1 typically is comparable with S 
in magnitude, we let y-  1 = 0(6), but this parametric regime does not comprise the 
rotational modes (see Morton & Shaughnessy, $4). 

Introducing 6 in place of x in (2.6), we obtain 

It is evident that (4.1) and ( 2 . 8 ~ )  admit the limiting solution 

= na+a2, P = Poe2G, Q = 0 (S+ 0). (4.3u, b, c) 
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The requirement that P remain bounded as 6 .f 00, which replaces the boundary con- 
dition (2.8b),  is satisfied by (4.3b) if and only if A/A < 0. Note that (4.3a) and (2.4) 
then imply that the peripheral speed of the disturbance relative t o  that of the container 
is equal to  the sonic speed co. 

The approximation (4.3) provides the basis for an outer expansion of the solution 
in 6 = O(w-1) = 0(6*), from which i t  appears that the natural scale for P, which 
measures the perturbation pressure relative to the ambient pressure, is &o rather 
than Sr,; nevertheless, i t  proves more efficient to regard both w and 5 as if they were 
O( 1) and to pose the expansion in the form 

ha = hf+6Al+S2A,+ ..., ( 4 . 4 4  

and 
P = Poew{l +6P,(6)+S~P2(~)+ ...} (4.4b) 

(4.4c) & = Poe~~~{S2&,(6) + ...}, 
where Po = P(0) is a constant. This last condition, together with (2 .8a) ,  implies 

P,(O) = &,(O) = 0 (n > 0). (4.5) 

Substituting (4.4) into (4.1), equating powers of 6 with w = O(l ) ,  and integrating 
the resulting equations for Pl, Pz and Q2 subject to ( 4 4 ,  we obtain 

AQ = n2 + a,, A, = 2n2( 1 - 4w)-l, A, = 8na( 1 - 4w)4 + 2y1n2( 1 - 4w)-,, (4.6a, b, c) 

Pl = y15+2w52, Pz = f P 4 1 + f ( ~ ~ + 4 ) ( A ~ / h ~ ) 6 ~ + Q o k  (4.7a, b )  

(4.8) 

and 
&2 = - ( A l P O )  5. 

h = (n2 + a2)) + neA-1{A(n2 + a2)i - 4n}-l+ O(A-4). 

The resulting second approximation to h (assumed positive) is 

(4.9) 

The first approximation to  the dimensionless perturbation pressure may be placed in 
the form [see (2.4a), where the factor exp ( - yg) is introduced] 

e-ycP/Po = e d (  1 - 266) -mA/A{  1 + 0(62)} = P C U .  (4.10) 

The corresponding second approximation is 

The approximations (4.9)-(4.11) are compared with the numerical results of Morton 
t Shaughnessy ( 1972) for the dominant mode (their ' mode 1 ') for n = 1, a = 0, y = 1.06 
and - 5 < A < - 1 in tables 1 and 2. [Morton & Shaughnessy's numerical results are 
for y = 1-06, not y = 1-4 as stated in their paper (Morton, private communication).] 
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-A h(4.9) A(M&S) 

1 1.200 1-270 
2 1.083 1.102 
3 1.048 1.055 
4 1.031 1.035 
5 1.022 1.024 

TABLE 1. h for n = 1, a = 0 (dominant mode) and y = 1.06, aa given by the approximation 
(4.9) and the numerical results of Morton & Shaughnessy (1972). 

A 
I -A > 

-1 -3 - 5  
P P r  

h 
\ 

eYtPplP, erWplPo e y P / P , ,  
r / r o  F1) pCz) (M & S) PCz) ( M &  S) pel) pCz) (M & S) 

1 1 1 1 1 1 1 1 1 1 
0.9 0.763 0.769 0.774 0.233 0.237 0.239 0.0332 0.0342 0.0344 
0.8 0.576 0.592 0.600 0.055 0.059 0.061 0.0013 0.0014 0.0015 
0.7 0.428 0.451 0.465 0.013 0.015 0.017 5 . 2 ~  6 . 3 ~  loT6 7.7 x 
0.6 0.311 0.337 0.358 0.003 0.004 0.005 2.3 x 3 . 0 ~  lo-' 4.9X lo-' 

TABLE 2. The dimensionless perturbation pressure, as given by (4.10), (4.1 l ) ,  and the 
numerical results of Morton & Shaughnessy (1972). 

5. Interior diffusion 

Retaining only the dominant effects of diffusion in the limit 6 3 0, we obtain? 
Both heat conduction and viscosity may be significant in the domain of low density. 

Dp + r-l(r&), + r-lj3ve +j3wz = 0, (5.la) 

P(Du-2Rv) = -pr+R2rp, (5.1 b) 

p^( Dv + 2Ru) = - r-lpe i- pv,,, (5 .1~)  

p^Dw = -Pa -k pw,, (5 . ld)  

D(P - CEP) - (7 - 1) A. = (P /P )  {(YP - c:P)/$}Tr, (5.le) 

in place of (%I),  where p is the viscosity and P is the Prandtl number. Substituting 
(2.4) into (5.1) and imposing the approximation P = 1, we obtain [cf. (4.1)J 

and 

[h{B-y16-2w(l - 2 6 [ ) ~ ' } + ~ € ~ ] P + { ~ , + ( 4 - 6 h 2 ) ( 1 - 2 S [ ) ~ ' - ~ 6 ~ € } &  = 0 (5.2a) 

and 

6{A2 - 612 - n2( 1 - 26&' + iyhb} P + [ A { 9  - 1 + 2 4  1 - 2SIg)-1} + i€(B - y ) ]  Q = 0, 

(5.2b) 

59 = d/d[, € = seyQB2,  E = p/(62p,coro). (5 .3a ,  b, c )  

where yl and w are defined by (4.2), 

t It can be shown that viscous diffusion is negligible in the radial equation of motion for 
6 Q 1. Axial diffusion is significant in the Ekman layers at  z = 0, I ,  but these layers are of 
only secondary importance in the present context. 
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We now assume that y-  1 = O(6)  and A2 = a2+n2+0(6), as in $4,  and let SJ.0 
with 61ns = o(1) [so that ZSC; Q 1 for sey6 = O(l)], P = O(1) and Q = O(S),  in which 
limit (5.2) reduces to  

(5.4a) 
and 

{A(% 2 0 )  +i€9} P = 0 

{A(B - 1 + 2 0 )  + i€(9 - I)} Q = - i6AdP (5.4b) 

or, on introducing [the present problem is not invariant under the transformation 
( A ,  -A)  + ( - A , A ) ,  so we do not assume A > 01 

[ = ( IA l /s )e - t+ * i "sgnA,  A = [ ( d / d [ ) ,  a = 2w, (5.6a, b, c) 

and 
( A 3 - [ ( A + a ) } P  = 0 

{A2(A + 1) - [ (A + 1 -a)}  Q = 6M2P-  

(5.6a) 

(5.6b) 

The differential equation (5.6~) has a regular singularity at [ = 0, with exponents 
p1 = p2 = p3 = 0, and an irregular singularity a t  [ = 00. The method of Frobenius 
(Ince 1944,$ 16.3) yields the three linearly independent solutions 

and 

where 

c; = c,{$(u + n) - 3+(n + I)}, 
r ( a  + n )  

r(a) r3(n + 1)' 
c, = 

(5.74 

(5.7b) 

(5.7c) 

(5.8a, b) 

c: = c,~{$(u + n)  - 3+(n + + c,{+'(u + n) - 31CI'(n + I)}, ( 5 . 8 ~ )  

and +(z)  is the logarithmic derivative of l+). The generalized hypergeometric func- 
tion lF2(u; 1 , l ;  c )  diverges like [*a-*exp (254) as [-+ co in larg [I < 7~ (see appendix B) 
and hence must be excluded from P in consequence of the requirement that  Q = 0 
a t  6 = 0. The function F3 also must be excluded from P in consequence of the re- 
quirement that  Q + 0 as [-+ 0 ([fco); its inclusion would imply Q = O(log2c) as 
[+ 0. This leaves only F2([) ,  for which P = O(log[) and Q = O([log[) as [+ 0 
[but note that the perturbation pressure, as given by (2.4a), is O(tJogc)]. Letting 

P = AF2([ ) ,  Po = AF2(ss-11AJ eiinBmA 1, (5.9a, b) 

arid invoking (appendix B) 

F: - p-y~)/r(i-a)}[--a (y+0O, a # 0,  -1,  - 2  ,... ), (5.10) 

A = P,{r(i - a ) / r ( a ) } ( ( h l / B ) a e * i n a s g n A .  (5.11) 
we obtain 
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The preceding development does not take advantage of the fact that a = 2 0  is 
small in the present context. Letting a + 0 in (5.7b), we obtain (after some manipu- 
lation) 

F2(C) = a-* - 2C - In C + a(&( [) - in2} + O(a2), (5.12) 
where 

dt - - 4/02dL{K0(t) +In (it) + C)t, 

( 5 . 1 3 ~ )  

(5.13b) 

C = 0-577 ... is Euler's constant, and KO is a modified Bessel function. Substituting 
(5.12) into (5.9b) or, alternatively, letting a + 0 in (5.11),  we obtain 

A = upo[ 1 + a{ln ( l A l / c )  + 2C + 4th sgn A} + O(a2)]. (5.14) 

This work was supported by the U.S. Department of Energy under Contract no. 
DE-AC05-760R01779 with the University of Virginia and was carried out by the 
writer in his capacity as a member of the Gas Centrifuge Theoretical Consultants 
Group. I am indebted to J. B. Morton and H. G. Wood for fruitful discussions. 

Appendix A. Axisymmetric modes 
Setting n = w = 0 in (2 .6 ) ,  introducing 7 from (3 .1 ) )  and eliminating P, we obtain 

( (d /~%/) '+y(d/d~/)+(y-  1)(a/h)a+(2-+3h2)(a2A-2-  l)v-'}Q = 0. (A I )  

The required solution then is given by (cf. Morton & Shaughnessy 1972) 

where 

K = { y 2 - 4 ( y -  1) (a/A)2}-' (2A2h2)-1(h2-4A2) ( A z - a z ) ,  

Jf(1 - K ,  2, Co) = 0, 

(A 4) 

(A 5) 

and C is a constant. The corresponding eigenvalue equation is 

where go is given by (A 3) with 7 = &A2 therein. 
Letting 6, f co (A f co) and invoking S (4.1.6), we obtain 

M(l - ~ , 2 , [ ~ )  - { r ' ( l - ~ ) } - ~ @ - ~ e ~ ~ { l + O ( ~ ~ ~ ) } + O ( ~ ; - ~ ) ,  (A 6) 

from which it follows that the roots of (A 5) are asymptotic to the poles of r( 1 - K )  or, 
equivalently, 

K = W ~  ( m = 1 , 2 , 3  )... ). (A 7) 

Note that K = 0 is not included in this sequence, but that A = a, which implies K = 0, 
is an admissible eigenvalue for which Q = 0 (see first paragraph in 5 4). 

Combining (A 4 )  and (A 7) and letting A2 f co with y - 1 = y1 /A2 ,  we obtain 
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Appendix B. Asymptotic approximations to Pl(5) and P2(C) 
The asymptotic behaviour of any function F(5)  as 5 -+ co is determined by the 

behaviour of its Laplace transform, f (8) = 9 F ,  as s -+ 0 if, as in the present case, f (s) 
is singular there. Invoking S (3.2.39), where the prefix S signifies an equation in Slater 
(1960), we obtain? 

for the generalized hypergeometric function Fl(5), ( 5 . 7 ~ ) .  Invoking S (4. 1 .7), 

r(a)s-1,Fl(a; 1;s-l) = s-ae1’8{1+0(1s1)} (s-+ 0, 9 s  > O ) ,  (B 2) 

inverting (B l ) ,  and letting 5 + co, we obtain 

r ( a )  Fl([) = &r-b@u-aexp (253) { 1 + O(5-l)} (5  -+ GO) (B 3) 

for all a. [The inverse transform of (B 2) exists for all 5 if and only if B a  > 0, but this 
restriction is unnecessary for the asymptotic limit 5 -+ 00. The result (B 3) is a special 
case of Wright’s (1935) results for the generalized hypergeometric function. The 
present derivation is more economical (at least for 5 > 0 )  than the conventional 
derivation from a Barnes-contour-integral representation ; it also motivates the follow- 
ing derivation .] 

The Laplace transform of F2(C), obtained by term-by-term transformation of (5.7 b ) ,  
is given by 

L Z F ~ ( [ )  = qa) s - ~ ( ~ ;  1 ;  8-11 ( 9 s  > 0 1 ,  (B 4) 

where U ,  defined by S (1.5.23,24), is a second solution of the confluent hypergeometric 
equation. Invoking S (4.1.1 1 ), 

U(a;  1;s-1) - ~ ( 1  +O(lsl)} (s + 0, Iargsl < in), (B 5) 

FA5) IV {r(a)/r(l-a)}5-’{l+o(lgl-1)} (5-+co, larg<l < fn). (B 6) 

we obtain 
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t Slatcr gives 9 8  > 1 for the validity of S (3.2.39), but it is evident from her preceding result 
that 9 s  > 0 is sufficient. 


